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To justify the accuracy of the engineering calculation of the nonstationary temperature field in an active ele-
ment of finite size, we propose to introduce into practice the performance criteria of calculation.

In connection with the advent of new energy-conserving technologies which are associated with the use of
thermal processes, it became necessary to justify the quality of calculation of nonstationary temperature fields in vari-
ous fuel elements (power transformers and capacitors, electric machines and apparatuses, charged-particle accelerators).
This performance criterion largely affects the following factors:

1) making constructive decisions in choosing weight and overall dimensions of the entire power installation in
order to provide reliable admissible temperature conditions;

2) justification of the approximate or numerical method of thermal calculation of an electromagnet;
3) rational approach to solution of the inverse problems which are associated with determination of the en-

ergy-thermophysical properties of materials (heat release, coefficients of heat and mass exchange, and dielectric and
other characteristics).

 In these cases, it is important to have reliable information which can be obtained either from expensive ex-
perimental investigations or from calculations according to a known analytical solution of the classical or numerical
problem of heat exchange.

At the present time, the development of computational engineering makes it possible to investigate more com-
prehensively analytical and numerical methods of the solution of problems, in particular, of heat conduction in solids
of finite size in a wide range of variation of different parameters.

Many analytical solutions of the linear nonstationary problems of heat conduction exist [1–4] or can be solved
analytically [5] or by other numerical-analytical methods [6–9]. However, because of the complexity of the analytical
solutions [2], related to the convergence of series sums, these solutions have not yet received practical implementation.
Moreover, in calculations, one can frequently obtain data contradicting the physical meaning of the problem.

The justification of other methods of solution [6–9] is based on a comparison of the results of numerical ex-
periments to the data calculated by analytical expressions with rigorously and specifically chosen parameters of the in-
itial problem. This approach was the only one possible in the absence of powerful facilities of computational
engineering. At the present time, it is necessary to obtain reliable information from the analytical solution of the initial
problem at the early stage of simulation of a thermal process in a specific active element. Of particular importance is
verification of calculation results, which implies the substitution of the calculated values into the initial differential
equations and boundary conditions of the investigated problem. Unfortunately, this stage has not received sufficient at-
tention in the literature, but it is quite essential in investigations. Only after this stage is it recommended to perform
the comparison to the experimental or other reliable data and to proceed to the simulation process itself in a wide
range of variation of the parameters of the initial problem.

The objective of the present work is to justify the specific problem of the performance criteria for analytical
calculation of the nonstationary temperature field in the active element.
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In the heat-conduction theory [1], the Fourier number is considered to be an important index of convergence
of a one-dimensional series. For example, for an unbounded plate with Fo ≥ 0.3 one can restrict oneself to one first
term of the series. When the initial problem is complicated, as will be shown below, it is evidently insufficient to
have one value of the Fourier number for obtaining reliable data.

Let us consider, for example, the two-dimensional problem of nonstationary heat conduction with internal heat
sources dependent on coordinates and time under asymmetric cooling conditions when the initial condition is zero.
This problem is most frequently encountered in thermal calculations of electromagnetic devices. The system of equa-
tions of this problem has the form 
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θ (X, Y, 0) = 0 . (3)

The solution of this system of equations according to [5] has the form
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 . (4)

Here µn and γm are the eigenvalues. They are found from the transcendental equations
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(7)

Let us consider the case of distribution of the specific loss in electric machines which frequently occurs in
practice:
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Po (X, Y, Fo) = Po0W1 (X) W2 (Y) exp (− s Fo) .

Here W1(X) = exp (− NX) and W2(Y) = 1 + MY + DY2.
For this case the function (7) takes the specific form

T1 (µn, γm, Fo) = Po0F1 (µn) F2 (γm, R) F3 (µn, γm, Fo) ,
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TABLE 1. Eigenvalues µn and γm Determined from Eqs. (5) and (6)

n, m µn γm n, m µn γm

1 1.382665 0.30031 15 44.03678 5.90008
2 3.754395 0.63786 16 47.17475 6.31665
3 6.639568 1.00477 17 53.45196 6.73349
4 9.671262 1.38902 18 56.59106 7.15056
5 12.75381 1.78388 19 59.73043 7.56783
6 15.85891 2.18548 20 62.87002 7.98526
7 18.97581 2.59151 21 66.00979 8.40283
8 22.09960 3.00055 22 69.00979 8.82053
9 25.22778 3.41169 23 72.28983 9.23833

10 28.35890 3.82435 24 75.43038 9.65622
11 31.49209 4.2383 25 78.57037 10.0742
12 34.62679 4.65276 26 81.71077 10.4922
13 37.76264 5.06805 27 87.99187 10.91035

TABLE 2. Influence of the Number of Terms in Series (4)–(7) on the Temperature at the Point of the Active Element for Fo
= 0.6, N = 2, s = 0.5, D = − 1 ⁄ R2 = − 0.017778, and Po(X, Y, Fo) = 28.616

θ ∂θ ⁄ Fo η1 η2 ζ i, j k, p

14.40 10.93 –16.13 –1.19 0.36 3; 4 20; 20
14.43 11.07 –16.22 –1.85 –0.52 3; 4 10; 10
14.42* –15.54 –1.82 +0.18 3; 3
14.70 11.25 –16.80 –1.74 –1.74 3; 4 5; 5
14.40 10.90 –16.12 –0.92 0.67 3; 4 30; 30
8.50 6.43 –16.24 –0.77 5.17 1; 1

14.88 11.60 –28.46 –3.36 –14.80 1; 2
15.78 12.42 –30.17 –4.27 –18.24 1; 3 5; 5
15.28 11.87 –29.21 –3.30 –15.76 1; 4
14.80 11.25 –28.30 –1.79 –12.73 1; 5

∗  η1 = 
∂2θ
∂X2

, η2 = 
∂2θ
∂Y2

, ξ = Po(X, Y, Fo) – 
∂2θ
∂Fo

 + 
∂2θ
∂X2 + 

∂2θ
∂Y2 is the discrepancy in the energy equation.
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Practical implementation of the solution (4)–(7) is associated with application of a limited number of terms in
the series (4). Therefore, the natural question arises: "How can this limitation affect the accuracy of the final results
of calculations?" As an example, we consider a pressure plate of a turbogenerator [10]. The initial data for the calcu-
lations are as follows: Bi1 = 0.8, Bi2 = 1.6, Bi3 = 0.4, Bi4 = 1.2, R = 7.5, Po = 112.0, N = M = s = 0, and D =
–1 ⁄ R2. From Eqs. (5) and (6) we find the eigenvalues. Their values are given in Table 1.

The next roots of the eigenvalues in the first approximation can be determined from the simple dependences

µn+1 = µn + π ,   γm+1 = γm + π ⁄ R .

For these eigenvalues we calculate the temperature fields at different Fourier numbers and parameters of heat releases.
Table 2 gives the calculated values (for the points X = 0.5 and Y = 0.25R) of the temperatures, the rate of temperature
change with time, and the discrepancy of the energy equation. From this table it is seen that the reliable results on
calculation of the thermal state of the active element under nonstationary conditions can be obtained only in the case
where the minimum discrepancy in the energy equation occurs. Otherwise, one can obtain incorrect results of calcula-
tions. It is quite obvious that in the present case the convergence of the double series is nonuniform. We carried out
the calculations on elucidating the influence of the accuracy of the initial data and determination of the final results of
calculations. It has been established that the greatest calculation error is observed for the case where the cooling is ab-
sent (Table 3).

Therefore, at large Fourier numbers we can restrict ourselves to a comparatively small discrepancy of 10−4 in
determining the eigenvalues, since the exact value of the temperature θ = 14.40 differs little from its approximate value
of 14.42 (Table 2). As far as the satisfaction of the boundary conditions is concerned, we can say the following. If in
the calculations the minimum discrepancy in the energy equation was achieved and the boundary-value problem was

TABLE 3. Evaluation of the Influence of the Initial Data on the Results of Calculations for Fo = 0.1, R = 7.5, Po0 = 112,
X∗  = 0.5, Y∗  = 0.5R, N = s = 2.0, D = –1.7778⋅10−2, and Bii = 0.00001 (i = 1, 2, 3, 4). [According to Eqs. (5) and (6), These
Biot Numbers Correspond to the Following Eigenvalues (µn = γmR): 0.0001, 3.142, 6.283, 9.425, 12.566, ...; k = p = 5]

Number of variant Bii n; m ζ θ µ1 = γ1R B

1 0.00001 2; 3 –41.1 5.87 0.0001 0.347

4; 2 –29.65 5.59 1.4⋅10−4

5; 5 –32.81 5.61 1⋅10–7

2 0.0001 4; 5 +93.7 –7.32 0.0001 1⋅10–4

3 0.0001 4; 5 –5.86 3.101 0.001 1⋅10–4

4 0.0001 4; 5 2.9⋅106 −3⋅105 0.00001 1⋅10–4

5 0.001 5; 5 −4⋅103 380.2 0.0001 1⋅10–7

6 0.001 3; 4 –4.86 3.09 0.001 1.6⋅10−2

4; 5 –5.87 3.10 1.4⋅10−4

5; 5 –7.61 3.11 1.10–7

7* 0.001 3; 3 0.06 11.20 0.001 1.10–2

8** 4; 5 –3.31 8.31 1.10–4

5; 4 1.2⋅10−7

 ∗  Constant heat release with D = N = M = s = 0 and Po0 = 112.
∗∗  Under heat release with Po0 = 112, D = –1.7778⋅10−2, and B = exp [–(µn

2 + γm
2  + s) Fo].
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posed and solved correctly, the boundary conditions are satisfied with a rather high accuracy. In our examples, the dis-
crepancies in the boundary conditions were of the order from 2.10−5 to 1.10−4 depending on the accuracy of determi-
nation of the eigenvalues for the boundary-value problem.

As is seen from Table 3, neglect of the value of the discrepancy in the energy equation can lead to incorrect
calculation results which are related to the reasonable accuracy of the initial data and to the accumulation of errors in
the course of evaluations. Therefore, as the final calculation results we take the values corresponding to variant 6: ζ =
–5.87, θ = 3.10 for Bii = 0.001, and µ1 = γ1R = 0.001. Comparison with variants 7 and 8 shows that for a constant
heat release the energy equation is fulfilled more exactly than in variant 8 and less exactly with a sharp change in the
heat release (variant 6).

Thus, the performance criteria for calculating the nonstationary two-dimensional temperature field in the active
element with a sharp change in the heat release with respect to the coordinates and time are the values for the mini-
mum discrepancies in the energy equation, the boundary conditions, and the exponential factor that depends on the
Fourier number. Along with the final results it is recommended to give the values of the minimum discrepancies in
the energy equation and the boundary conditions in justifying any method of calculation (analytical, numerical, or ap-
proximate) of the problem of engineering thermal physics.

NOTATION

θ = [T(x, y, τ) – Tcool]/Tsc, dimensionless temperature, T(x, y, τ), Tcool, and Tsc, corresponding temperatures;

Po(X, Y, Fo) = qv(x, y, τ)b2/(λxTsc), Pomerantsev number; N, D, M, and s, components of the heat release; Bi1,2 =

α1,2b ⁄ λx and Bi3,4 = α3,4b ⁄ √λxλy , Biot numbers; X = x/b, Y = 
y
b
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, and R = 
H
b
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λx
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1 ⁄ 2

, dimensionless coordi-

nates; b and H, geometric dimensions; λx and λy, coefficients of thermal conductivity; αi (i = 1, 2, 3, 4), coefficients

of heat exchange; Fo = aτ ⁄ b2, Fourier number; n and m, numbers of series terms; i and j, number of the series terms
at which the minimum discrepancy in the energy equation is observed; k and p, limited number of the terms of every
series used in calculating the specific variant of the problem under consideration. Subscripts: cool, coolant; sc, scale.
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